Recurrent Quantum Neural Network based EEG signal denoising for a Brain-Computer Interface
نویسندگان
چکیده
Brain-computer interface (BCI) technology is a means of communication that allows individuals with severe movement disability to communicate with external assistive devices using the electroencephalogram (EEG) or other brain signals. This paper presents an alternative neural information processing architecture using Schrödinger wave equation for enhancement of the raw EEG signal. The raw EEG signal obtained from the motor imagery (MI) of a BCI user is intrinsically embedded with non-Gaussian noise while the actual signal is still a mystery. The proposed recurrent quantum neural network (RQNN) is designed to filter such non-Gaussian noise using an unsupervised learning scheme without making any assumption about the signal type. The proposed learning architecture has been modified to do away with the Hebbian learning associated with the existing RQNN architecture [1] as this learning scheme was found to be unstable for complex signals such as EEG. Besides this the soliton behaviour of the non-linear Schrödinger wave equation was not properly preserved in the existing scheme. The unsupervised learning algorithm proposed in this paper is able to efficiently capture the statistical behaviour of the input signal while making the algorithm robust to parametric sensitivity. This denoised EEG signal is then fed as an input to the feature extractor to obtain the Hjorth features. These features are then used to train a Linear Discriminant Analysis (LDA) classifier. It is shown that the accuracy of the classifier output over the training and the evaluation datasets using the filtered EEG is much higher compared to that using the raw EEG signal. The improvement in classification accuracy computed over nine subjects is found to be statistically significant.
منابع مشابه
Robot control system using SMR signals detection
One of the important issues in designing a brain-computer interface system is to select the type of mental activity to be imagined. In some of these systems, mental activity varies with user intent and action that must be controlled by the brain-computer system, and in a number of other signals, the received signals contain the same activity-related mental activity that should be performed by t...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملQuantum Neural Network-Based EEG Filtering for a Brain-Computer Interface
A novel neural information processing architecture inspired by quantum mechanics and incorporating the well-known Schrodinger wave equation is proposed in this paper. The proposed architecture referred to as recurrent quantum neural network (RQNN) can characterize a nonstationary stochastic signal as time-varying wave packets. A robust unsupervised learning algorithm enables the RQNN to effecti...
متن کاملEEG Signal Recognition Based on Wavelet Transform and ACCLN Network
The electroencephalogram (EEG) is a record of brain activity. Brain Computer Interface (BCI) technology formed by the EEG signal has become one of the hotspots at present. How to extract the feature signal of EEG is the most basic research of BCI technology. In this paper, A new method of recognizing fatigue, conscious, concentrated state of human brain is proposed by the combination of discret...
متن کامل